EECS 562

Homework 12

- 1. An AM receiver uses an envelope detector. The transmitter operates at total transmit power of 50KW with a 85% modulation index. The information signal is $x_{bb}(t) = \cos(2\pi f_m t)$, $f_m = 10$ kHz. The path loss between the transmitter and AM receiver is 95 dB. The noise power spectral density of $N_0 = -117$ dB_W/Hz. The RF bandwidth is 50kHz.
 - a. What is the post-detection S/N?
 - b. Repeat part a. with DSB-SC.
- **2.** A 10 kHz message signal is transmitted using DSB-SC with a carrier frequency f_c =980kHz over a nosey channel with noise power spectral density of $N_0/2$ =10⁻¹⁵ W/Hz. The receiver sensitivity is -57 dB_m. The receiver sensitivity is defined as the minimum received signal power (pre-detection) that will provide a demodulated signal with acceptable performance. What is the post-detection S/N?
- **3.** A radio link has the following parameters:

Transmit power	10 W
Transmitter Antenna Gain	10 dB
Path loss	135 dB
Antenna temperature	290 K
Receiver antenna gain	10 dB
Receiver noise figure	3dB
Antenna Temperature	290
Information signal bandwidth	6 MHz

DSB-LC with modulation index 0.75

- a. What is the $(S/N)_{pre}$ in dB?
- b. What is the $(S/N)_{post}$ in dB?
- c. Your supervisor tells you that to reduce the receiver cost there has been a design change and the receiver noise figure has changed to 6dB. The customer wants same output S/N found in part a. What system parameter would your change and by how much?
- d. Repeat b. with FM with β =5.
- **4.** A 4 kHz message signal is transmitted using DSB-SC with a carrier frequency f_c =610kHz over a nosey channel with noise power spectral density of $N_0/2$ =8x10⁻¹⁵ W/Hz. The received signal power is -55dBm.
 - a. What is the post-detection S/N?
 - b. Repeat part a. with FM with β =1.
- **5.** Suppose the following costs have been determined for a specific communication system.

RF Bandwidth: \$200/kHz

Power: \$2/watt

The customer wants a (S/N) post= 20 dB.

The fixed link parameters are an information bandwidth of 10 kHz, a path loss of 60 dB, and a constant noise power spectral density of $N_0 = 0.5 \times 10^{-9}$ watts/Hz.

- a. Calculate the cost to the customer if DSB-LC is used with a 85% modulation index .
- b. Repeat a. for SSB.
- c. Repeat a. for DSB-SC.

- 6. Consider a communication system with a required (S/N)post of 25 dB and an information signal bandwidth of 10 kHz. The received signal consists of the transmitted signal plus noise where $S_n(f) = \frac{N_0}{2} = 0.5 \times 10^{-9}$ watts/Hz. The path loss between the transmitter and receiver is 100 dB. Find the required transmitter power in dB_W for:
 - a. SSB
 - b. DSB-SC
 - c. DSB-LC μ =1
 - d. FM β =0.2
 - e. FM β =5
- 7. Consider an FM transmitter with a transmitter power of 50KW. The path loss is 97dB, N_0 =-116dBW/Hz. The baseband bandwidth is 200 kHz.
 - a. Find β such that the (S/N)post =25 dB?
 - b. What is BRF in kHz?
- 8. Comparison of system resources (power and BRF) for different modulation schemes. In this case:
 - Path loss = 93dB
 - $-N_0 = -113 \text{dBW/Hz}$
 - B_{bb} = baseband bandwidth = 100 kHz
 - a. Fill out the table below to meet a required output signal-to-noise ratio, (S/N)post =35dB BW Expansion Factor = B_{RF}/B_{bb}

Mod	Mod Index	Gp(dB)	Pt(dBw)	Pt(KW)	Brf (kHz)	BW Expansion Factor
DSB-SC						
SSB						
AM	0.75					
AM	1					
FM	1.67					
FM	2					
FM	4					

- b. For the FM cases above discuss the trade-off between B_{RF} and P_T .
- c. Comment of the feasibility of using each modulation format given the required transmit power.